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Abstract. The recently proposed method for investigating the large-order behaviour of the 
perturbative expansion is applied to a quantum thermodynamical system of interacting 
bosons in one space dimension. The method makes essential use of the classical solutions for 
the total Hamiltonian and of the oscillations about them. The contribution of these 
oscillations is calculated by using a canonical transformation related to the inverse scattering 
method, the relevant equation being the nonlinear Schrodinger equation. The leading- 
order corrections to the Bose-Einstein distribution are obtained explicitly. 

1. Introduction 

Recently a good deal of work has been done on the very interesting question of the 
large-order behaviour of the pertubative series (Lipatov 1977a, b, BrCzin eta1 1977a, b, 
Parisi 1977, BrCzin 1978). The interest lies in two different but related aspects. The first 
is the old problem of the convergence of the series (Dyson 1952, Hurst 1952), which has 
long been a typical problem of QED, even if one realises that in comparison with 
experiments the perturbative expansion works exceedingly well. Once the convergence 
(or most likely the non-convergence) of the series has been understood, the second 
aspect is the problem of summing it as well as possible to obtain information useful in 
situations where the first orders of the perturbative expansion are less reliable, typically 
the case of strong coupling constants. 

We present here our analysis of a one-dimensional system of interacting bosons at 
fixed temperature based on the Lipatov-BrCzin-Le Guillou-Zinn-Justin method of 
large-order estimation of the perturbative series. 

The system is described by the partition function 

p is the inverse of the temperature, p is the negative of the chemical potential, the mass 
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of the particle is it, and the functional integration goes over periodic functions 
$ ( O )  = $(p), $'(O) = $(p)  (see e.g. Bernard 1974). We have found this system worthy 
of investigation, since the 'instanton' structure, which plays a relevant role in the 
large-order estimation, is very well known, and, moreover, we have at our disposal the 
whole technique of the inverse scattering method, by means of which it is relatively easy 
to compute the quantum fluctuations around the classicial solutions. The system is also 
interesting in itself as a non-trivial thermodynamical system, and because we know an 
interesting property, clarified by Yang and Yang (1969), about the large-coupling- 
constant limit of the model (which yields the partition function of a free Fermi gas). In 
view of that, our analysis can also be considered as a test of the kind of information 
which can be extracted from a knowledge of the large-order behaviour of the pertur- 
bative series. We find that, while this knowledge gives information on the nature of the 
singularity for zero coupling constant, it is unable in itself to predict, for instance, the 
behaviour for large coupling constants. This behaviour is in general determined in an 
essential way by the terms which, from the point of view of the large-order expansion, 
are non-leading. We give an explicit numerical example, related to our model, in which 
this penenomenon is explicitly seen. 

Our paper therefore has the purpose of being a non-trivial application of the method 
to an interesting system, and an illustration of the kind of problems it can help to 
understand. 

2. Zero space dimensions 

We begin, as an introduction, with a very simple example-the case in which our system 
is considered in zero dimensions. Let $ and $' be the boson destruction and creation 
operators, with [$, $+I = 1, and let the Hamiltonian be 

The partition function for the system is 

using the representation in which 4'4 is diagonal and equals n. Consider now the series 
expansion in f: 

The series is divergent, since for large K 

We would like now to show how the same result can be obtained by the saddle-point 
method in the path integral formulation, since it is the method that we will follow in the 
more interesting case of one space dimension. 

t In the following will sometimes be referred to as 'mass'. 
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The path integral representation of Z is obtained by considering the functional 
integration over $ ( T )  and $+(7),  with $ and $’ periodic, i.e. $(O) = $@), etc: 

We will normalise it at the end by considering the ratio Z/Z( f = 0). The large-order 
estimation of ZK (defined by Z = ZKfKZK) corresponds to the saddle-point evaluation 
(BrCzin et a1 1977a) of the integral 

Putting $ = 4/Qy we get a saddle point for negative f, 

a& + ~4 - 2(4+4)4  = 0, -a&+ +p4+ - 2(4+4)4+  = 0, f =  -(l/K)V, 
(2.5) 

where we have defined 
8 

V =  Jo d7(4C4)2. 

Let us postpone for a moment the actual solution of these equations, and let us consider 
the method in general. On the solution, 

After performing the trivial integration over the oscillations in f around the saddle- 
point value, one finds 

ZK = N(-)K”(K!/K)V-K(1/2.rri)Tosc, (2.6) 

where To,, represents the integral, to be evaluated, over the oscillations in $ and $+. 
It is clear then that the dominant contribution comes from the saddle-point 

configurations in which V is (in modulus) a minimum. 
The solution of equations (2.5) gives 

with B = c+c, and the periodicity requirement gives the constraint 

p-2B=(2i.rr/@)I, 1=0,*1,*2, . . . .  
Then 

v = p ~ ’  = p(p/2 -iwl/p)’. 

(2.7) 

In general we find solutions which occur in complex conjugate pairs. Actually the 
dominant contribution for K -* 00 corresponds to 1 = 0, where the solution is real. This 
indeed gives the minimum value for I VI. 

The quantity T,, previously introduced in (2.6) is obtained by expanding the field 
around the ‘classical’ solution, 

= (P/21fl)*’2+ $’(7), 
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and integrating over $'. Actually it is better to work in Fourier space, and by defining 

where w, = (27r /p)n ,  we find 

It is easy to understand the meaning of the last integration: the model is actually 
invariant for a global phase rotation of +; therefore the classical solution is more 
generally 

1/2 eiu 
+Cl = (p/2lfl) , 

and then 

We next evaluate for normalisation purposes the quantity Z ( f  = 0), which we find to 
be 

T 

so that finally we obtain 

The last infinite product is ambiguous, and we have to give a meaning to it. This is best 
discussed by rewriting it in the form exp L, where 

L = [ln(p + iw,) - In(iw,)]. 
n f O  

We see that the terms of the sum behave for large n as -p / ion ,  and since w ,  is h e a r  in 
n, the sum is formally logarithmically divergent; however, if for instance once considers 
the symmetric expression ln[(p2 + w 2 ) / w 2 ] ,  which is formally equivalent to L, one 
finds a finite result. Actually the root of the ambiguity is to be found in a one-loop term 
which is isolated by writing 

The ambiguous term is p [l /( iw, + p ) ] ,  which is proportional to the expectation 
value (++(O)$(O)). We know (Fetter and Walecka 1971) that the correct way of treating 
it is to introduce the .r-ordering T, and define it to be l i m ~ ~ o + ( ~ * ( + + ( ~ ) $ ( 0 ) ) ) .  We then 
find 

PP 
CL E--- eSW - I '  - 1 

n + o  iw, + p 
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With this recipe we can compute L by correcting the symmetric expression 

so that we finally get 

(2.11) 

which coincides with the exact expression we have seen previously (see equation (2.2) 
a n d Z ( f  =O)= l/(l-e-”’)). 

An important point which emerges from this example is the fact that for large values 
of K the estimation is determined by the configurations in which the ‘number operator’ 
$+$ takes large values, and we know that in this case the semiclassical approximation, 
on which the method is based, gives sensible results. 

We can make another more technical remark: the result of the asymptotic expansion 
turns out to be correct even though we neglected the contribution of infinitely many 
other saddle points that give non-leading contributions in e-91. We will do the same in 
the following more complicated case. 

3. One space dimension 

3.1. Saddle points and classical solutions 

The evaluation of the large orders in the series expansion of the partition function for 
the one-dimensional model follows the same pattern that we have seen in the previous 
section for the zero-dimensional case. The main difference occurs in the computation of 
the contribution of the oscillations around the classical solution, which is now much 
more difficult. It is convenient here to take advantage of the techniques of the inverse 
scattering method which have been developed to deal with the system we are consider- 
ing. Essentially, we will perform a change of variables in the functional integration, and 
thus we will obtain the result rather straightforwardly. 

We will consider the large-order expansion of the Fourier transform with respect to 
the space of the two-point correlation function G”’ taken for T~ = 72, since this quantity 
is of more immediate interest, giving the mean value of the occupation number in 
momentum space, and we can eventually compare the result with the usual Bose- 
Einstein distribution which is obtained for the coupling constant A = 0. The starting 
point is the same as in 0 2, namely we write 

K 

and 

where d($, $+; A )  is defined in equation (1.2). 
Again, the saddle point corresponds to a negative value for A, and putting for 

convenience q = (-A/2)1/2$ we obtain the following equations for the saddle-point 
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configuration: 

(3.2) 
AK 
2 

-+d(4 ,  4+; -2) = 0 ,  

aff - a h  + ~4 - 2(q+4)4 = 0 ,  - a 4 +  - 8:s’ + ~ 4 +  - 2(q+q)q+ = 0. 

The second and third equations are the classicial field equations known as the 
non-linear Schrodinger equations, which were studied by Zakharov and Shabat (1971) 
in their well-known work on the inverse scattering method. Notice that the coupling 
constant appearing here is negative, as in the Zakharov and Shabat paper, and it is 
therefore opposite in sign to the physical coupling constant which appears in equation 
(1.2). The only difference with respect to Zakharov and Shabat is that our ‘time 
variable’ 7 corresponds to the analytic continuation of their time variable t, according to 
the substitution t + -ir, which usually occurs in the transition to statistical mechanics. 

If we call qdx ,  T ) ,  q : ( x ,  7) the solutions of equation (3.2), and put AcI= 
d(q,I, 4: ; -2), we obtain, as in 0 2, after integrating over the oscillations in A, 

where the classical solutions qc l (x ,  7), q:(x, 7) obtained from equation (3.2) are expli- 
citly given as 

e - 2 i & - ( 2 ~ i / p ) / ~ r  e2i&+(2?ri/p)/2r 

cosh[2qx - ( 2 ~ i / / 3 ) 1 ~ ~ ]  4cfi(X, 7 )  = 277 zqcosh[2~x - (2~ i / /3 ) l l r ]  4clk 7) = 

(3.4) 

and Do,, represents the contribution of the integral over the oscillations of the field 
around the classical solution, divided by the partition function at A = 0. 

3.2 Canonical transformation from the inverse scattering method 

In order to compute Do,, we turn to the inverse scattering method. First of all, we review 
some essential points of this method. The field variables q and q+ are (at given, fixed 
time) canonically conjugate variables in the sense of classical mechanics; therefore we 
define the classical Poisson bracket to be 

The inverse scattering method corresponds to a canonical transformation (Zakharov 
and Manakov 1974). The new set of variables are in part indexed by a discrete 
parameter n and in part by a continuous parameter s (these parameters replace the 
parameter x appearing in 4(x)): &, p,, U,, U,; P ( s ) ,  Q(s). In principle, every one of 
these variables takes real values from -CO to CO. They are defined by means of an 
associated scattering problem, which we will not review here, and their Poisson brackets 
can be computed with the result 

[Q(s), p(s’)lPB=ia(s -0, (3.6) 

every other combination giving zero. Therefore the transformation is canonical, 

1. [m, Pn’lPB = k I * ,  [U,, Un’IPB = g a n , n ’ ,  
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modulo some trivial rescaling. We also introduce 

a,  = U, + ivn, a i  =U, -iv,,  

A(s) = (Q(s)+iP(s))/J;?, A+($) = (Q(s) - iP(s))/J2. (3.7) 

such that 
1 

[U,,  U;*]PB = -&,,, [A(S), A+(S’)]pg = 8 ( S  -S’). 

The variables introduced by Zakharov and Shabat, namely the ‘soliton’ parameters 
z ,  = 6, +iqn, c’, and the ‘continuum’ parameter arg b(s), a2(s) are simplyrelated to our 
variables by 

- 5, = t lnc, 2 =pn+iq5,, a, = Jqn ei*n, a:  = JGe-i+n 

and 

A(S) = (In ~ * ( s ) / r ) ” ~  A+(s) = (lna2(s)/.rr)1’2 eiargb(’). 

The important point is that the Hamiltonian has a simple expression in terms of the 
new variables: 

H = 1 dx[ax4+(x) a x s ( x ) + p s + ( x ) s ( x ) - ( s + ( x ) s ( x ) ) 2 ~  

n = l  

The integer N characterises the sector in which there are N solitons. 

.d(q,q+; - 2 ) = 1  dT( f (2i5, aTpn-2aia,a,)+ 

Accordingly, the action d(q, q + ;  -2) can be written as 
8 m 

0 n = l  1-m 
dsA+(s)a,A(s) 

m 

+ 4a:a,[p - $ ( U ~ U , ) ~  + 45’,] + 1 -m ds ( p  + 4s2)A’(s)A(s)) 

+ W P )  - WO),  

(3.8) 

where 9 is the generating function of the canonical transformation (Girardello and 
Jengo 1977). (We will see that a knowledge of 9 is not necessary for our computation.) 
In terms of the new variables the classical equations of motion are 

a,[, = 0, a,(aia,) = o (3.9a) 

(and therefore 5, and q, = a;a, are constant), 

(3.9b) 

(3.9c) 

We are looking for periodic solutions in T for q ( x ,  T) and q + ( x ,  T) of period equal to p. It 
is seen from the equations of the inverse scattering method that this is equivalent to 
requiring a periodicity of period /3 for A and A’, and a periodicity of period $@ for 
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exp p, a, U + .  Therefore A and A+ are zero at the saddle point, and we must have, for 
the soliton parameters, 

8 5 n q n  = (2r/P)l1n, P +4& - 72,) = ( 2 . r r i / ~ ) ~ , ,  1.3.10) 

where 11 ,  and 12, are positive or negative or null-integer numbers. 
Since we are interested in the solution giving the minimal action AcI, which is the 

dominant term for large K,  we limit ourselves to the 'one-soliton solution', and 
therefore we take N = 1. Then the parameter n is n = 1 and we drop it from the 
following formulae. 

Notice that, in the spirit of the saddle-point method, we are in general considering 
solutions in the analytic extension of the dynamical variables Re 4 and Im 4. Therefore 
in general in our solutions 4 and 4 +  are not complex conjugates of each other. 

Actually the classical action A,, is infinite for 1, # 0, owing to the zeros of the 
denominator in the integration domain for x and T ,  and therefore we take I I  = 0, which 
implies .$q = 0. Our choice is 5 = 0, since 77 = 0 would again give A,, = E. 

We can now compute A,, for the other cases, and we find, from equation (1.2)-;-, 

A cl = a  3877 . (3.1 1 )  

Since q 2  = p /4 -  (.rri/2P)E2, it is clear that /Acl/ is a minimum for l 2  = 0. Therefore the 
dominant contribution for K + comes from this case, which corresponds to a static 
soliton solution. 

The next step is the evaluation of the oscillations around this solution, that is 
around+ 

acl = a: = id;, Pcl = 0, ' 5 1  = 0, Acl=A:i=O. (3.12) 

The change of variables in the functional integration, from the old ones q(x, 7 )  and 
4 + ( x ,  T )  to the new ones, being a canonical transformation, gives a Jacobian equal to 
unity. There are subtle anomalies with respect to this expected J = 1, which, however, 
only show up at the multi-loop level-as has been explicitly studied for the case of point 
canonical transformations (Gervais and Jevicki 1976, Salomonson 1977)-and should 
therefore not affect our one-loop calculation. As a check, a particular contribution, that 
from the oscillations independent of T,  has been calculated directly, i.e. without passing 
through the canonical transformation, and found to be identical with the one calculated 
in the way described here. 

We therefore have to compute the second derivative of the action as it is written in 
equation (3.8) with respect to the variables a, a+, p, 6, A,  A". The second derivative of 
9, evaluated from the classical solution, is zero. This is so because, if we consider in 
general a canonical transformation from ( p ,  4 )  to (P, Q), the generating function is a 
function, for example, of the form ie(4,Q) and d%//a4i0 = p ,  die/dQI, = P. Now when 
we consider aie/aQ at fixed P o r  d i e / d P  at fixed Q, we have to think of ie(4(P, Q), Q). It 
is clear, therefore, that the second derivatives of ie with respect to P and/or Q can be 
expressed in terms of the old variables and derivatives of them with respect to the new 
ones; all these terms are, in the classical solution, periodic in T with period 8, and 
therefore the difference between the contributions at P and at zero vanishes. 

In conclusion, we can forget ie in computing D,,,. 

+ We cannot compute it from equation (3) since we do not know the value of 9CP 1 - S(0) .  
$ Of course, a more general solution is a = f Jp  e'", a* = fdp e-'", p = po, with a and po arbitrary constants. 
We will automatically take account of these solutions in evaluating the oscillations around the values of 
equation (3.11). 
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3.3 Computation of the integral over the oscillations 

Since the action written in equation (3.8) is a sum of a part containing only the soliton 
variables and a part containing only the continuum variables, the integral over the 
oscillations factorises. Let us co_nsider first the contribution of the soliton variables. 
Putting U = ucl + U', with ucl = gp, every other variable being zero on the saddle point, 
we have to compute the functional integral over periodic functions 

D,,,(soliton) = N  Du'DvDpDS exp(-2 Io d~{2iv&u'+i@,p + 4 J i 6 2 - 8 p ~ ' 2 } ) .  

(3.13) 

Here the functional integral is originally over the variables JI = ( -2/A)1/2q,  etc. The 
variables which we use are then obtained by canonically transforming JI and 4'. We 
change variables, going to the Fourier series transforms 

B I 

217 
w m  =- 

l B  

P " 
U', = 6 Io d7 eiomr U ' (71, 

and similarly for the other variables, and we choose the normalisation factor N in such a 
way that the integral is 

Notice that, for instance, U', is complex and du', means d(Re uk)d(I_m U',). The 
reason for introducing the factor l/(As)1'2 for every soliton variable and J 2  for U; and 
vm is that in this way the soliton variables becomes homogeneous with the continuous 
variables, namely for As + 0 we have formally 

to be compared with [A(s ) ,A ' ( s ' ) ]=S(s - s ' ) ,  or in terms of P(s)  and Q(s), 
[Q(s),  P(s')]  = iS(s - s f ) .  

This is important, since we normalise our computation by taking the ratio with 
Z(A = 0), and for this free case the canonical transformation is trivial: 

A(s ,  7) == dx ezis*JI(x, 7), 

A+(s, T) = - dx e-2isxJI'(x, T), 

Jl7 ' I  
G ' I  

Therefore we will always write the functional integral over the continuum variables as 

where 
i r 8  

A m ( s )  == A ( s ,  7) eiWmTd7, JP I J  0 

etc. This will ensure the proper normalisation of the ratio Z(A)/Z(O).  As a check, the 
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quantity As must disappear in the final result. The integration is easy, and we obtain 

(3.14) 

The factor (-i) comes from the negative eigenvalue mode ub, and we have indicated the 
integrals over the zero modes. As in the zero-dimensional case, vo just represents the 
phase of the classical solution; to be more precise 

(3.15) 

The variable po is proportional to the position in space xo of the soliton solution, i.e. in 
general and classical solution which we have to consider is (-2/A)1’2qcl(x - xo, T), where 
qCl(x, T) is given by equation (3.4). 

Comparing equation (3.4) with equation (3.96) and equation (3.10) we see that 

(3.16) 

The integral 5 dxo acts on the term qCl(x - xo, 7)42(x -xo, 7) in equation (3.3). We now 
evaluate the contribution of the oscillations of the ‘continuum’ variables, and we 
consider the ratio D,,,(continuum)/Z(A = 0). It is convenient to ‘discretise’ also the 
continuum variables by writing 5 ds A’A = I;; AsA’(si)A(si), etc, and correspondingly 
the functional integral in the Fourier space with respect to 7 is 5 nm H i  dAm(sj)/(As)1/2. 

(3.17) 

Z(A = 0) is formally the same expression, as we have said, the difference being the fact 
that the density of states (i) is different, since for A # 0 some of the variables describe the 
soliton and therefore have to be subtracted from the continuum variables. If we write 

D,,,(continuum) = exp 1 f ( s i ) d A  ( i )  , ( ;  1 
where d A ( i )  is the density of the states for A # 0 (Rajaraman 1975), then 

and Xi,, is the sum over every state which appears for A = 0. It is easy to see, from the 
inverse scattering method, that 

dA(io)/do(io) - 1 = (As/~)A+/hs ,  

+ being a phase shift, and for our soliton configuration we have the result 

A+/AS = J & s ~ + ~ / ~ ) .  
In conclusion, 

D,,,(continuum) =exp(/--[ln(-As) ds .‘; p. +4s2 
Z(A = 0 )  IT s + p / 4  

m + 4(p + 4s2)2 
2 + m = l  f ln(402 IT 
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The final result is obtained by multiplying equations (3.14) and (3.17), taking into 
account equations (3.15) and (3.16), and remembering that -A/2 = AJK:  

1 Dose 
21ri Z(A = 0) 
- 

The exponent appearing in equation (3.18) seems to be a divergent quantity when 
summed over m and q. This happens because the logarithm in the exponent contains 
(when viewed in a perturbative expansion) the sum of all one-loop graphs. One of them, 
corresponding to a pure mass renormalisation effect, is ambiguous, and its evaluation 
has to be done in the way discussed in 0 2 for the case with zero space dimensions?. The 
correct procedure is the same as in equation (2.9) and (2.10), and we therefore write 

We then expand the second logarithm in p(q2 + 1) and evaluate correctly the ambi- 
guous term X m z O  l/[iwm +p(q2+  l)] according to the prescription of 0 2. In this way 
the sum gives 

and the complete exponent is therefore 

2 I _dq (In p (q2  + 1) + In sinhBCL(q2 + 1) -In pcL (q2  + 1) - 2 PP ( S 2  + I)), 
7r q + 1  2 2 

which is convergent in q. Substituting in equation (3.3) we find 

where F ( y )  is given by 

(3.20) 

This represents the large-order expansion of the correction to the finite-temperature 
propagator. Taking the Fourier transform with respect to the space and 'time', we 
obtain the representation in terms of the usual variables p and w, = (27r/P)n (the 
integral over xo in equation (3.19) ensures momentum conservation). Our result can be 
written in the following way, with g = 3A/8pp3l2: 

G"'(p, w, )  = 1 + , . . 1 (-)KgKKK!)9" 
1 1 e F ( B w )  

iw, + p 2 + p  /.L Klarge 64 cosh(1rp/2&) ( P P ) ~ '  
(3.21) 

t Once the correct prescription has been followed there is no need for explicit mass renormalisation and 
therefore no counter term of this kind will appear in the Hamiltonian (Fetter and Walecka 1971). 
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Two limiting cases, where the expression simplifies considerably, are 

-+1 as v-+oo. eF(y)=  16y2 as y "0, e F ~ ~ '  

Notice again that the dominant contribution for large K only affects the mode n = 0. 
Finally, the large-order contribution can be Borel-summed according to the formula 

r3.22) 

where 81(r) and %'z(z) are the exponential integral functions defined, for example, in 
Abramowitz and Stegun (1968). 

Now for small values of g this sum is not very different in actual value from the first 
terms of the asymptotic expansion from which it was obtained, e.g. for g = 0-1 the actual 
value is s(g) = -0.08, the first term gives -0.1, and the sum of the first and second terms 
gives -0.06. 

For large g the behaviour of s(g) is -(l /g)(ln g + y + l ) ,  where y is the Euler 
constant. However, as will be discussed in § 4, the meaning of the sum for large g is not 
free from ambiguities. 

4. Discussion of the result 

In order to discuss the meaning of the result obtained in 9: 3 let us consider the 
occupation number n ( p )  in momentum space, which is proportional to the Fourier 
transform, with respect to space, of lim.+O($+(E, x)$(O, 0)) (Fetter and Walecka 1971). 
In terms of the Green function G"'(p, w , )  we have 

n ( p )  = - lim e1wn'G(2)(p, w , )  
1 Q 

p s - r o  "=-cc 

From our previous discussion it is clear that we have just computed the leading terms of 
the correction for K -+ CO. It is possible to perform the Borel sum of the large-K 
contribution, as we have explicitly done at the end of 0 3.3. Notice, however, that the 
actual result of the Borel sum is ambiguous, firstly because we have arbitrarily 
extrapolated the result for small K, and secondly because one can rewrite the term K !K 
in different ways, which leave invariant the leading order but can modify the result; for 
instance, we could have used ( 2 ~ ) " ~  e-KKK+3/2. Indeed, the method essentially gives 
information on the kind of singularity one has for g -+ 0; as we see, it is a logarithmic 
branch point, as is usual in theories of this type. The next question could be whether the 
method is also able to give information on the strong-coupling regime, that is for g -+ 00. 

One might think that this is possible, since the Borel sum, within some ambiguities, 
represents a way of handling the most divergent contribution. 

Here we can make a rather precise test of the method, since we know from the work 
of Yang and Yang (see also Thacker 1977) that, in the one-dimensional case we are 
considering, the limit for g --* 00 of n ( p )  is a Fermi-Dirac distribution, namely 
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In fact we do not find any indication of this result in equation (4.1). Let us try, then, to 
understand the reason for this. 

One can re-derive schematically the result of Yang and Yang (1969) by considering 
a lattice in x space and field variables at each lattice site $ ( x i ) ,  $+(x i ) ,  with the 
commutation relations [+ (x i ) ,  ++(xi)] = Si+ Writing the single-site Hamiltonian as 

Hi = p++(xi )+(x i )  + g++*(xi)+'(xi) = ( p  -g)ni  + g n f ,  
where ni is the number operator ni = + + ( x i ) $ ( x i ) ,  we see that in the limit g -* 00 only the 
states ni = 0 , l  have a finite energy. At the single-site level, then, we obtain Fermi-like 
operators by representing $ ( x i )  and +'(xi) in this subspace. In the one-dimensional 
lattice it is then possible, by a standard trick (Lieb et a1 1961, Pfeuty 1970), to transform 
these operators into anti-commuting Fermi operators for different sites, and from that 
we obtain the result. It is apparent from this analysis that the dominant configuration 
for large g corresponds to small occupation numbers, where any semiclassical approxi- 
mation would fail. On the other hand, we have already noticed that the method for 
obtaining the large-order estimation relies on a semiclassical approximation. It follows 
from these considerations that the strong-coupling features of the theory do not appear 
in the dominant terms for large K.  The sum of these dominant terms is not very relevant 
in the limit g +CO. 

We would like to illustrate this point by means of a simple example. Let us consider 
as a problem the approximate computation of the integral 

(4.2) 

This example is tailored in order to produce, in the application of the saddle-point 
method we are studying, two relevant saddle points, the 'field' variable U being large in 
one of them and of the order of unity in the other (see below). This is the reason for the 
term gu2 in the exponent of the integrand: we can think of it as a kind of mass 
counter-term, as it is necessary for the path integral formulation of a normal-order 
prescription in the interaction. In the one-dimensional system we have considered in 
this paper there was no need for a counter-term, the normal ordering being ensured by 
the particular prescription used to evaluate the ambiguous infinite products, as dis- 
cussed in 00  2 and 3. 

It is easily seen that 

Z ( g ) -  ( 2 ~ / g ) ~ / ~ e ~ / ~ - ~ / ~ .  
g+m 

The coefficient of the asymptotic expansion in g can also be computed exactly, and we 
have the formal series 

with 

(4.3) 

Let us now apply the saddle-point method to evaluate ZK. Following the discussion 
of $0 2 and 3, we obtain that the saddle point in the variables g and U is, in the limit of 
large K,  

(4.4) 2 2  g = gci--p2/4K, U = u C l - 2 K / p + $ .  
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By integrating over the oscillations according to the general prescriptions, we obtain the 
contribution 

This is indeed the leading term for large K of the exact result written in equation (4.3). 
There is, however, another saddle point, for 

(4.6) 2 2 1  g = gL-4K, U = ~ L - i - p / 8 K ,  

which, again after the various integrations, gives the contribution 

zy - (J,/2)(#K+’/2 ( l / r ( K  +$)) (4.7) 

This, of course, is non-leading with respect to the previous one. However, it is precisely 
the series (convergent in the usual sense and non-alternating in sign) 

(4.8) 

which gives the result for g + 00. Here we see that the relevant configuration for large g 
is the one in which the ‘field’ U is not large. If we think of the Borel method of 
summation as a sort of dispersion relation in the coupling constant (Cardy 1977), where 
a relevant role is played by the singularities for small g, the other term we find, namely 
ZK gK@, corresponds to the addition of an entire function to the dispersion represen- 
tation. 

Our conclusion is that the method of large-K expansion plus a Borel summation 
prescription gives useful information on the behaviour of the theory for small coupling 
constants. In particular, it enables one to deal with the formally diverging perturbative 
series-take as an example the compact result one obtains by substituting equation 
(3.22) into equation (4.1). However, the other regime, namely that of large coupling 
constants, can in general be affected in a decisive way by terms which are negligible 
compared with the leading ones for large orders in g. 
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